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Al~traet--Simple relations for the prediction of the propagation of pressure disturbances in liquid-gaseous 
two-phase systems are presented. The model applied makes use of the well known physical behaviour that the 
sonic velocity in a single-phase fluid is influenced by the elasticy of the confining walls. The novel concept is to 
consider the interface of the one phase to act as the elastic wall of the other phase and vice versa. The predictions 
comply well with the experimental data found in the literature. 

INTRODUCTION 

Sonic velocity as a material property of single-phase fluids has been studied for a long time and 
as such been applied to two-phase flows resulting in a multitude of computational models for 
the determination of the propagation of sound. However, to the knowledge of the authors no 
model exists allowing the prediction of the sonic velocity in two-phase flows over the entire 
range of the void fraction and for all flow regimes. 

A sidle phase fluid flowing in a tube with an elastic wall shows a dependency upon the bulk 
modulus of the tube wall, i.e. the sonic velocity decreases with an increasing elasticity of the 
wall material. This fact is applied to two-phase systems, treating the interface of one phase as 
the elastic boundary of the other. It is assumed that no phase change occurs during the 
propagation of sound. The two-phase flow system is considered to be confined by a rigid wall. 

ANALYSIS 

The analysis of the propagation of an infinitesimal pressure disturbance in a pure fluid leads 
to the well known Laplace-equation for the sonic velocity a 

a2 dp 
=aT [11 

where p is the pressure and p the density. The propagation of an infinitesimal pressure wave in 
a pure fluid confined by an elastic tube wall was first described by L6wy (1928) and again by 
Raabe (1960) by the following equation 

a~ = a2 

I+ErD" 
Ew S 

[2] 

Figure 1 depicts the effective sonic velocity, an, of a single phase pure fluid, bounded by an 
elastic wall, as a function of the bulk modulus Ew of the wall material. EF is the bulk modulus 
of the fluid, D is the tube diameter and S the tube wall thickness. The theory for two-phase 
systems is based upon the following assumptions: 

--The interface of the one phase acts as the elastic wall of the other and vice versa. 
--No phase change occurs dui'ing the propagation of a pressure disturbance. 
--Frictional forces are neglegible. 
--No influence of the surface tension upon the pressure disturbance exists. 
--The system is one-dimensional. 
--The two-phase fluid is bounded by a rigid wall. 

tExtract from a forthcoming doctoral thesis by Dipl.-Ing. D. L. Nguyen. 
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Figure I. Sonic velocity in a pure fluid as function of the bulk modulus of the tube wall. 

First the sonic velocities of the participating phases are derived employing the conservation 
equations for mass and momentum. Considering a stationary wave front in a moving single 
phase medium (figure 2) the continuity equation can be written as 

d F + d p  d w + = 0 [3] 
w F p 

where w is the velocity and F is the cross section. Note, the term dF[F is customarily omitted, 
however in the current application the influence of the variation of the flow cross-section upon 
the propagation of the pressure disturbance is taken into account. 

Neglecting the frictional forces the momentum equation can be written as 

pw d w + d p  =0 .  [4] 

Combination of the continuity and momentum equations yields 

w2 _ 1 -- a ~ .  [5] 
p dF  dp 
F dp + dp 

The above expression describes the effective sonic velocity of the individual phases confined by 
elastic boundaries. This effective sonic velocity depends upon the cross-sectional variation of 
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Figure 2. Propagation of an infinitesimal pressure pulse. 
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the flow caused by a pressure change and upon the sonic velocity as a physical property of the 
fluid under investigation. 

Subsequently the effective sonic velocities will be developed for three different two-phase 
flow regimes. 

Stratified flow model 
Note, that the sonic velocities (physical properties) of the pure phases, aL and ao, are 

different from the effective sonic velocities, aE, L and aE, a in the two phase system. 
Equation [5] is written for the gaseous phase in a stratified system (figure 3): 

2 1 
aE, a = P__,q_a d_Fa + dpa " 

Fo dp dp 

[6] 

For a composite system bounded by a rigid tube the variation of the cross-sectional areas with 
pressure change is 

dF = dFL + dFo = 0 

dF~ = - dFL. 
[71 

In stratified systems the differential of the cross-sectional area fraction equals the differential of 
the volume fraction: 

d =-if-= V 

where V is the volume. Under the assumption that no phase change occurs, this relation results 
in 

dFL ML 
F = 7 d vL [8] 

where v is the specific volume and M is the mass. Substitution of the specific volume into [I] leads to 

Introducing [9] in [8] yields 

2 

d vL = - ~ dp. [91 

dFL M:,? - VL 
F- va~dP= v~LaL dP" [10] 

Moving wave front Rigid wall 

Gas. O E, G ~G 

Liquid \Elastic interface ~L 

Figure 3. Propagation of an infinitesimal pressure pulse in the gas phase of a stratified two-phase system. 
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Combination of [10] and [7] gives 

dec_ EL 
dp plat  2 " 

[11] 

Substitution of [11] and [1] into [6] leads to 

, 1 
aiLG = 1 _~oaFL 1 

a~ 2 Pc Fc ac 2 

which in turn by replacing of the area ratio by the void fraction a = Fa/F results in 

1 [12] 2 
a E ,  O = I 1 - a p a  1"  

- - 4  
aG 2 a Pt ac: 

The influence of the liquid phase upon the magnitude of the effective sonic velocity in the 
gaseous phase in the above equation is given by the term pL" aL 2, which represents the 
compressibility of the liquid. Since the product of density and sonic velocity of the liquid is 
very large the second term in the denominator in [12] contributes very little. 

The considerations which lead to the derivations of the effective sonic velocity in the gas 
phase are now applied to the liquid phase in an analogous way (figure 4). Equation [5] is written 
for the liquid phase: 

a~,L -- 1 [131 
PL dFL dpL" 
Ft dp + dp 

The corresponding expressions from [7] to [10] lead to 

dFL= FG [14] 
dp paa~ " 

Substitution of [1] and [14] into [13] yields the final relation for the effective sonic velocity in 
the liquid phase 

1 [151 2 
as'L= 1 a PL l " 

+ 
aL 2 l - u o ~ a ~  

In contrast to [12] the compressibility of the gas, pa • a~ z, in the second term of the denomina- 
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Figure 4. Propagation of an infinitesimal pressure pulse in the liquid phase of a stratified two phase system. 
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tor is quite small and thus exercises a larger influence upon the effective sonic velocity in the 
liquid phase. 

For stratified one dimensional flow a composite sonic velocity does not exist, because each 
of the separated phases is continuous in axial direction. If a pressure pulse is imposed on the 
liquid and the gas at the same time, the disturbance propagates with different velocities in both 
phases in axial direction (parallel to the interface). 

Slug flow model 
Following Henry et aL (1971) the real distribution of the two phases in the slug flow pattern, 

as illustrated in figure 5(a), is replaced by an idealized one as depicted in figure 5(b). In the 
idealized slug flow model the cross-sectional areas in both phases are equal 

FL= Fo= F 

and therefore 

dFL = dFo = dF = 0. [16] 

Inserting [16] into [5] results in 

d p _  
a~-,L = ~ - aL e [171 

dp = ad  [18] 

In contrast to the stratified flow model for which a composite sonic velocity does not exist a 
compound sonic velocity for an idealized slug flow system is given by 

L L L 
as = T  =tL+tG LL ~ L~ 

dE, L aE, G 

where subscript S indicates a slug. With the void fraction a = L o / L  the preceding expression 
becomes 

1 [19] 
a s = l - a  a 

a~L a~G 

Substitution of [17] and [18] into [19] yields 

dLaG 
as = (1 - a)aa + aaL " [201 

IJ i!11.]!llli  
(a) (b) 

Figure 5. Gas and liquid elements in (a) a slug flow, and (b) an idealized slug flow model. 
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The sonic velocity in this 
function of the void fraction and the sonic velocities of the pure phases. 
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system, by virtue of the idealized phase distribution, is only a 

follows 

F~ 
F 

dFG= F da. 

Together with [7] the above expression converts to 

dFL = - d F a  = - F da. [21] 

Under the assumption that no phase change occurs (dx = O) and with the defining relation 
between void fraction and quality x 

xpL 

a = xpL + (1 - x)p~ ' 

the following expression for the variation of the void fraction is obtained 

da = a (1 -  ~)( d ~ -  d;:  ) . [22] 

Now we make use of the previously derived expression for the effective sonic velocity in a fluid 
with an elastic boundary. Equation [5] applied to the liquid phase of a homogeneous two-phase 
flow system leads to 

1 2 __ 
a E ,  L --  PL. dFL _~ dpL" 

FL dp dp 

Combining this equation with [1], [21] and [22] results in 

1 [231 2 

a ~,L = I - a aPL 
aL 2 pGaG 2 

In an analogous procedure the effective sonic velocity for the gaseous phase of a homogeneous 
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Figure 6. Propagation of an infinitesimal pressure pulse in a homogeneous two-phase system, 

Homogeneous/low model 
With the assumption of a homogeneous phase distribution according to figure 6 from 
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two-phase system is derived to be 

= 1 

aG 2 pL aL 2 

[24] 

As depicted in figure 6 the system can be divided into imaginary parallel axial tubes. In each 
tube the wave front serially passes zones of the liquid phase with a velocity aB, L and of the gas 
phase with the velocity aE, o. Therefore the propagation of a pressure pulse in the imaginary 
tubes corresponds to that in slug flow, so that we can use relation [19] for the evaluation of the 
composite sonic velocity in homogeneous two-phase flow. Combining [23] and [24] with [19] 
leads to 

1 

( l - a )  ~ paaJ) a ~ OLaL / 

COMPARISON OF EXPERIMENTAL DATA WITH 
ANALYTICAL PREDICTIONS 

Stratified flow model 
Theoretical predictions obtained with [12] and [15] are depicted in figure 7 and compared 

with experimental data measured by Henry et al. (1971). Figure 7(a) gives the comparison for 
the one-component-system water-vapor and figure 7(b) for the two-component-system water- 
air. In both cases the predictions made with [12] match the measurements very well, while the 
curves generated with [15] describing the much lower effective sonic velocity in the liquid phase 
seem to lack experimental support. 

Henry et al. (1971) used piezoelectric transducers in their experiments to record the pressure 
pulse passing two separate locations. Sonic velocity was determined by the distance of the 
transducers and the time elapsed between the recorded signals. Different experiments with the 
transducers first being located on the bottom of the horizontal test section under liquid and then 
on the top in the gas phase led to the same result. If we consider, that in every experiment the 
first arriving pressure signals were taken for the determination of the effective sonic velocity 
and that these signals were due to the pressure pulse which passed through the gas phase, the 
correlations of the experimental and theoretical data shown in figure 7 can be readily explained 
corresponding to the statements of yon B6ckh (1975). 
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Figure 7. Comparison of experimental data by Henry et al. (1971) with analytical predictions. 
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Slug flow 
The idealized slug flow model by Henry et al. (1971) and our own one yield identical 

relations. 
Good agreement between theoretical predictions and experimental values by Henry et al. 

(1971) is evident in figure 8. 

Homogeneous two-phase flow 
Compared to the scarcity of data in other two-phase flow regimes many experimental values 

are available for homogeneous two-phase flow systems. 
The theoretical predictions for homogeneous two-phase flow performed with [25] are in very 

good agreement with the well known experimental data by Henry et al. (1971), England et aL 
(1966) and Karplus (1961) as shown in figures 9-11. Remarkable is the consistency of the 
measured values with the theory over the entire range of the phase distribution under 
consideration. 

Semenov & Kosterin (1964) apparently are the only experimentators who measured sonic 
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Figure 8. Comparison of analytical with experimental results by Henry et al. (1971). 
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Figure 9. Comparison of experimental data by Henry et al. (1971) with analytical predictions. 
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Figure 10. Comparison of experimental data by England et al. (1966) with analytical predictions. 
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Figure 11. Comparison of experimental data by Karplus (1961) with analytical predictions. 

Figure 12. Comparison of experimental data by Semenov & Kosterin (1964) with analytical predictions. A, 
Water-air system, p=l.2Sbar; 1, water-vapor system, p=10bar; 2, water-vapor system, p=lSbar, 

coordinate at 0'; 3, water-vapor system, p =20 bar, coordinate at (Y'. 

velocities in homogeneous two-phase systems over the entire range of void fraction. The 
predictions with the new model match the experimental values very well in the range 
0 < a < 0.6, although, only marginally well for values of a > 0.6. This is true both for one- and 
two-component homogeneous two-phase flow (figure 12). 

CONCLUSIONS 

The paper presents a simple model for predicting the sonic velocity in two-phase systems. 
The model is based upon the well known theory for the computation of the propagation velocity 
of a pressure disturbance in a single phase fluid bounded by an elastic wall. It is assumed that 
no phase change occurs during the propagation of a pressure disturbance. The model has been 
applied to the prediction of sonic velocities in one-dimensional stratified, slug and homogeneous 
two-phase flow systems. By comparison of the theoretical results with experimental data 
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available in the literature the model has been shown to be remarkably successful in predicting 
the sonic velocity in most of the flow regimes of two-phase gas-liquid flows over the entire 
range of void and mass fraction. Currently investigations are in progress to extend the model to 
the determination of critical mass flow rates in two-phase flow systems. 
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